Covariate Regularized Community Detection in Sparse Graphs
نویسندگان
چکیده
منابع مشابه
Community detection in graphs
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i.e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, ...
متن کاملSpectral community detection in sparse networks
Spectral methods based on the eigenvectors of matrices are widely used in the analysis of network data, particularly for community detection and graph partitioning. Standard methods based on the adjacency matrix and related matrices, however, break down for very sparse networks, which includes many networks of practical interest. As a solution to this problem it has been recently proposed that ...
متن کاملCommunity Detection in Sparse Random Networks
We consider the problem of detecting a tight community in a sparse random network. This is formalized as testing for the existence of a dense random subgraph in a random graph. Under the null hypothesis, the graph is a realization of an Erdös-Rényi graph on N vertices and with connection probability p0; under the alternative, there is an unknown subgraph on n vertices where the connection proba...
متن کاملSparse regularized local regression
The intention is to provide a Bayesian formulation of regularized local linear regression, combined with techniques for optimal bandwidth selection. This approach arises from the idea that only those covariates that are found to be relevant for the regression function should be considered by the kernel function used to define the neighborhood of the point of interest. However, the regression fu...
متن کاملCommunity Detection on Evolving Graphs
Clustering is a fundamental step in many information-retrieval and data-mining applications. Detecting clusters in graphs is also a key tool for finding the community structure in social and behavioral networks. In many of these applications, the input graph evolves over time in a continual and decentralized manner, and, to maintain a good clustering, the clustering algorithm needs to repeatedl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2020
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2019.1706541